If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+5q+2=0
a = 3; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·3·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*3}=\frac{-6}{6} =-1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*3}=\frac{-4}{6} =-2/3 $
| 18v+10=4 | | 22x+16=5(2x-4 | | 3x+(-36)=4x | | (p-2)/4+6=14 | | -5(x-5-6x)=59 | | p-2/4+6=14 | | 5+2m=5(m+-7)+-3m | | /5+2m=5(m+-7)+-3m | | -14+n=-4 | | 1/2(8x+6)+2=25 | | 5=-35+2m+-2m | | -5(x-5-6x=59 | | (x-2)^2=25 | | 5x+6=11x-42 | | 12q-10=-30 | | 15x-25-5=5x-25+65 | | 4x-20=88/11 | | 5x=5x+7-15 | | 15y=275-10y | | 0.2w-5=13 | | 18x-27=12x-18 | | 3/4(2x+1=2 | | (1-3w)4-15w=19 | | 4x-20=88 | | 3(x+24)=-6 | | 10x-75+12x=-30 | | -18=5d-5 | | 1×2x=96 | | -421=-7(-8x-5)+x | | -3(1-2/3v)=9 | | 4x-(x+4)=14 | | 17=z-(-9$ |